Kuwait University

Math 101

Date:

October 28, 2004

Dept. of Math. & Comp. Sci. First Exam Duration:

75 minutes

Calculators, mobile phones, pagers and all other mobile communication equipment are not allowed

Answer the following questions:

1. Use the definition of the limit to show that:

$$\lim_{x \to A} (7 - 2x) = -1. \tag{3 pts.}$$

2. Evaluate the following limits, if they exist:

(a)
$$\lim_{x\to 1} \left[(x-1)^2 \sin\left(\frac{\pi}{x-1}\right) + 2 \right]$$
 (3 pts.)

(b)
$$\lim_{x\to 0} \frac{2x + \sin 3x}{x - \tan 6x}$$
 (3 pts.)

3. Find the x-coordinates of the points at which the function f is discontinuous, where

$$f(x) = \frac{x^3 - 8}{x^2 - 5x + 6}.$$

Classify the types of discontinuity of f as removable, jump, or infinite. (4 pts.)

(a) State The Intermediate Value Theorem.

(b) Show that
$$f(x) = 3x^4 + 6x^3 + x^2 + x + 1$$
, has a real root. (2 pts.)

5. Use the definition of the derivative to find f'(3), where $f(x) = \sqrt{x+1}$. (3 pts.)

6. Find the points on the graph of $f(x) = \frac{x^2}{x+1}$, at which the tangent line is horizontal.

(3 pts.)

(1 pt.)

7. Find
$$f'(x)$$
, where $f(x) = \sin^4(5x^3 + x + 2) - \csc\sqrt{x^2 + 1}$. (3 pts.)

- for every $\varepsilon > 0$ there is a $\delta > 0$ such that if $0 < |x-4| < \delta$, then $|(7-2x)-(-1)| < \varepsilon$.
- 2. (a) $-1 \le \sin\left(\frac{\pi}{x-1}\right) \le 1$ for $x \ne 1$. $\implies -(x-1)^2 \le (x-1)^2 \sin\left(\frac{\pi}{x-1}\right) \le 1$

- 1. Let $\varepsilon > 0$ such that: $|(7-2x)-(-1)| < \varepsilon \iff |x-4| < \frac{\varepsilon}{2}$. Take $|0<\delta \le \frac{\varepsilon}{2}|$. So,

$$(x-1)^2 \cdot \lim_{x \to 1} - (x-1)^2 = 0 = \lim_{x \to 1} (x-1)^2$$
, from the Squeeze Theorem:
 $\lim_{x \to 1} (x-1)^2 \sin\left(\frac{\pi}{x-1}\right) = 0 \implies \lim_{x \to 1} \left[(x-1)^2 \sin\left(\frac{\pi}{x-1}\right) + 2\right] = 0 + 2 = 2$.

(b) $\lim_{x \to 0} \frac{2x + \sin 3x}{x - \tan 6x} = \lim_{x \to 0} \frac{\cancel{x} \left(2 + \frac{\sin 3x}{x}\right)}{\cancel{x} \left(1 - \frac{\tan 6x}{x}\right)} = \frac{2 + 3 \lim_{3x \to 0} \frac{\sin 3x}{3x}}{1 - 6 \lim_{6x \to 0} \frac{\tan 6x}{6x}} = \frac{2 + 3(1)}{1 - 6(1)} = \boxed{1}.$

f(2) is undefined, $\lim_{x\to 2} f(x) = \lim_{x\to 2} \frac{(x-2)(x^2+2x+4)}{(x-2)(x-3)} = \boxed{-12} \implies \text{The graph of } f$

f(3) is undefined, $\lim_{x\to 3^{\pm}} f(x) = \pm \infty$ \implies The graph of f has an <u>infinite</u> discontinuity

4. (a) f(0) = 1 > 0, f(-1) = -2 < 0 & f is continuous on [-1,0] [polynomial

5. $\frac{f(x) - f(3)}{x - 3} = \frac{\sqrt{x + 1} - 2}{x - 3} \times \frac{\sqrt{x + 1} + 2}{\sqrt{x + 1} + 2} = \frac{(x + 1) - 4}{(x - 3)(\sqrt{x + 1} + 2)} = \frac{1}{\sqrt{x + 1} + 2}$, for

x = 0 or x = -2. \implies The graph of f has horizontal tangent lines at $P_1(0,0)$ and

7. $f'(x) = 4(15x^2 + 1)\cos(5x^3 + x + 2)\sin^3(5x^3 + x + 2) + \frac{x}{\sqrt{x^2 + 1}}\csc(\sqrt{x^2 + 1}\cot(\sqrt{x^2 + 1}))$

function \implies From The Intermediate Value Theorem, there is a $c \in (-1,0)$

3. $x^2 - 5x + 6 = (x - 2)(x - 3)$.

at x=3.

has a *removable* discontinuity at x =

 $x \neq 3. \implies f'(3) = \lim_{x \to 3} \frac{f(x) - f(3)}{x - 3} = \frac{1}{4}$

 $P_2(-2, -4)$. [f(0) = 0, f(-2) = -4].

such that $f(c) = 0 \implies c$ is a real root for f.

6. $f'(x) = \frac{x^2 + 2x}{(x+1)^2} = \frac{x(x+2)}{(x+1)^2}$. For horizontal tangent $f'(x) = 0 \implies$